

Slenderness Effects for Columns in Non-Sway Frame - Moment Magnification Method (CSA A23.3-19)

Slender Concrete Column Design in Non-Sway Frame Buildings

Evaluate slenderness effect for columns in a non-sway frame multistory reinforced concrete building (Q is computed to be much less than 0.05) by designing a two-story high column in the middle of an atrium opening at the second-floor level. The design forces obtained from a first-order analysis are provided in the design data section below. The story height is 4.3 m. it is assumed that the column only resists gravity loads. Compare the calculated results with exact values from <u>spColumn</u> engineering software program from <u>StructurePoint</u>.

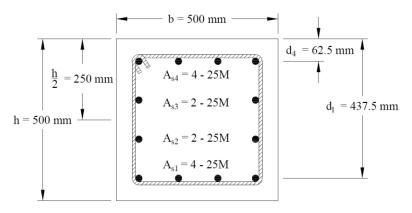


Figure 1 – Slender Reinforced Concrete Column Cross-Section

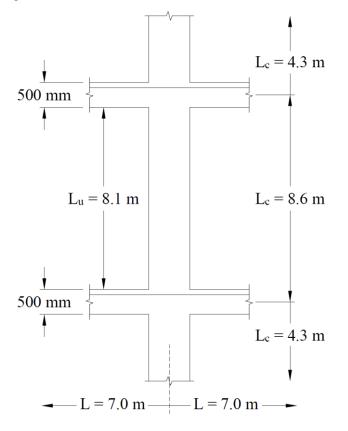


Figure 2 – Slender Reinforced Concrete Column Elevation

Contents

1.	Factored Axial Loads and Bending Moments	4
	1.1. Load Combinations – Factored Loads	4
2.	Slenderness Effects and Sway or Non-sway Frame Designation	4
3.	Effective Length Factor (k)	4
4.	Check if Slenderness can be Neglected	6
5.	Moment Magnification – Non-Sway Frame	7
	5.1. Calculation of Critical Load (Pc)	7
	5.2. Calculation of Magnified Moment (M _c)	8
6.	Column Design	9
7.	Column Design - spColumn Software	10
8.	Conclusions & Observations	17

Code

Design of Concrete Structures (CSA A23.3-19)

Reference

Concrete Design Handbook, Fourth Edition, 2016, Cement Association of Canada (CAC), Example 8.1.

Design Data

Concrete f_c ' = 40 MPa ρ_c = 2400 kg/m³

Steel $f_y = 400 \text{ MPa}$

Slab: $h_s = 150 \text{ mm}, b_{eff} = 1800 \text{ mm}$

Beams: $h = 500 \text{ mm}, b_w = 400 \text{ mm}, l = 7 \text{ m}$

Columns: h = 500 mm, b = 500 mm

Additional service design forces obtained from first-order analysis will be considered in this example to outline and discuss the evolution of CSA A23.3 provisions in slenderness calculations for non-sway columns where the largest first-order moment, M_{2} , is less than the minimum moment, $M_{2,min}$:

Table 1 – Additional column service load cases					
Load Casa	Axial Load,	Bending	Moment, kN.m		
Load Case	kN	Тор	Bottom		
Dead, D	1776	48	-8		
Live, L	1320	30	-5		

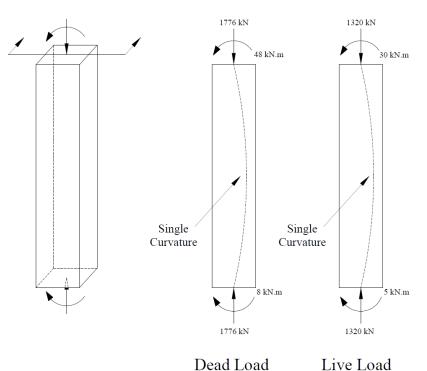


Figure 3 – Service Design Forces

1. Factored Axial Loads and Bending Moments

1.1. Load Combinations – Factored Loads

CSA A.23.3-19 (Annex C, Table C.1a)

Table 2 - Column factored loads							
CSA A23.3-14	No.	Load Combination	Axial Load, kN	Bending Mon	Bending Moment, kN.m		M _{Bottom,ns}
Reference	Reference No.	Loud Comoniation		Тор	Bottom	kN.m	kN.m
Annex C	1	1.4D	2486	67.2	11.2	67.2	11.2
Table C.1a	2	1.25D + 1.5L	4200	105.0	17.5	105.0	17.5

2. Slenderness Effects and Sway or Non-sway Frame Designation

Columns and stories in structures are considered as non-sway frames if the stability index for the story (Q) does not exceed 0.05. <u>CSA A.23.3-19 (10.14.4)</u>

The reference assumed that the Q value is much less than 0.05. Therefore, the frame is considered as a non-sway frame.

3. Effective Length Factor (k)

$$I_{column} = 0.7 \times \frac{c^4}{12} = 0.7 \times \frac{500^4}{12} = 3.65 \times 10^9 \text{ mm}^4$$

$$E_c = \left(3,300 \times \sqrt{f_c} + 6,900\right) \left(\frac{\gamma_c}{2,300}\right)^{1.5}$$

$$E_c = \left(3,300 \times \sqrt{40} + 6,900\right) \left(\frac{2,400}{2,300}\right)^{1.5} = 29602 \text{ MPa}$$
For column being designed:

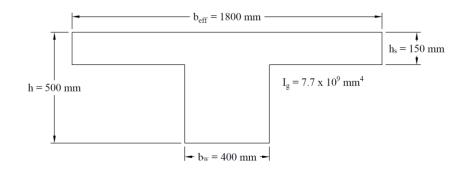
$$\frac{E_c \times I_{column}}{l_c} = \frac{29602 \times 3.65 \times 10^9}{8600} = 1.25 \times 10^{10} \text{ N.mm}$$

For other columns:

$$\frac{E_c \times I_{column}}{l_c} = \frac{29602 \times 3.65 \times 10^9}{4300} = 2.51 \times 10^{10} \text{ N.mm}$$

For beams framing into the columns:

$$\frac{E_b \times I_{beam}}{l_b} = \frac{29602 \times 2.70 \times 10^9}{7000} = 1.14 \times 10^{10} \text{ N.mm}$$


Where:

$$I_{beam} = 0.35 \times 7.7 \times 10^9 = 2.70 \times 10^9 \text{ mm}^4$$

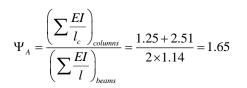

CSA A.23.3-19 (10.14.1.2)

Figure 4 - Beam Cross-Section

CSA A.23.3-19 (Figure N.10.15.1)

 $\Psi_B = \Psi_A = 1.65$

Using Figure N10.15.1(a) from CSA A23.3-14 $\rightarrow k = 0.835$ as shown in the figure below for the exterior column.

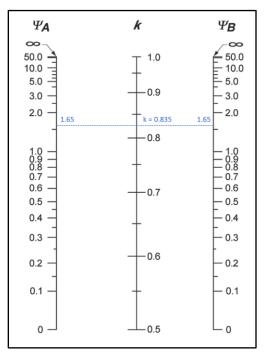


Figure 5 – Effective Length Factor (k) (Non-Sway Frame)

CONCRETE SOFTWARE SOLUTIONS

4. Check if Slenderness can be Neglected

CSA A23.3-19 allows to neglect the slenderness in a non-sway frame if:

$$\frac{k \times l_{u}}{r} \leq \frac{25 - 10 \left(\frac{M_{1}}{M_{2}}\right)}{\sqrt{\frac{P_{f}}{f_{c} \times A_{g}}}}$$

$$r = \sqrt{\frac{I_{s}}{A_{s}}} = \sqrt{\frac{c^{2}}{12}} = \sqrt{\frac{500^{2}}{12}} = 144.34 \text{ mm}$$

$$\frac{k \times l_{u}}{r} = \frac{0.835 \times (8600 - 500)}{144.34} = 46.86$$

$$\frac{k \times l_{u}}{r} \leq \frac{25 - 10 \left(\frac{M_{1}}{M_{2}}\right)}{\sqrt{\frac{P_{f}}{f_{c} \times A_{g}}}}$$

$$\frac{CSA A.23.3 - 19 (Eq. 10.16)}{CSA A.23.3 - 19 (Eq. 10.16)}$$

per CSA A23.3-19:

- M_1/M_2 is not taken less than -0.5.
- M_1/M_2 shall be taken positive if the member is bent in single curvature and
- shall be taken as 1.0 if M₂ is less than M_{2,min}

Check minimum moment:

$$(M_2)_{\min} = P_f (15 + 0.03h)$$

 $(M_2)_{\min} = 4200 \times (15 + 0.03 \times 500) / 1000 = 126 \text{ kN.m} > M_2 = 105 \text{ kN.m}$

Since $M_2 < M_{2,min}$, M_1/M_2 ratio shall be taken as 1.0.

CSA A.23.3-19 (10.15.2)

CSA A23.3-19 (10.15.3.1)

$$\frac{M_1}{M_2} = 1.0$$

$$\frac{25 - 10\left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}} = \frac{25 - 10(1.0)}{\sqrt{\frac{4200 \times 1000}{40 \times (500 \times 500)}}} \frac{25 - 10}{0.648} = 23.15$$

$$\frac{k \times l_u}{r} = 46.86 > \frac{25 - 10 \left(\frac{M_1}{M_2}\right)}{\sqrt{\frac{P_f}{f_c \times A_g}}} = 23.15 \quad \therefore \text{ slenderness can't be neglected.}$$

CONCRETE SOFTWARE SOLUTIONS

Structure Point

CSA A23.3-19 (10.15.3.1)

5. Moment Magnification – Non-Sway Frame

$$M_{c} = \frac{C_{m}M_{2}}{1 - \frac{P_{f}}{\phi_{m}P_{c}}} \ge M_{2}$$
CSA A23.3-19 (10.15.3.1)

Where:

$$C_m = 0.6 + 0.4 \frac{M_1}{M_2} \ge 0.4$$

CSA A23.3-19 (10.15.3.2)

And, the member resistance factor would be $\phi_m = 0.75$

$$P_{c} = \frac{\pi^{2} (EI)_{eff}}{(kl_{u})^{2}}$$
 CSA A23.3-19 (Eq. 10.18)

Where:

$$(EI)_{eff} = \begin{cases} (a) \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d} \\ (b) \frac{0.4E_c I_g}{1 + \beta_d} \end{cases}$$

$$CSA A23.3-19 (10.15.3.1)$$

There are two options for calculating the effective flexural stiffness of slender concrete columns $(EI)_{eff}$. The first equation provides accurate representation of the reinforcement in the section and will be used in this example and is also used by the solver in <u>spColumn</u>. Further comparison of the available options is provided in "<u>Effective</u> <u>Flexural Stiffness for Critical Buckling Load of Concrete Columns</u>" technical note.

5.1. Calculation of Critical Load (Pc)

$$r = \sqrt{\frac{I_s}{A_s}} = \sqrt{\frac{500^4 / 12}{500^2}} = 144.34 \text{ mm}$$
 CSA A23.3-19 (10.14.2)

With 12 - 25M reinforcement equally distributed on all sides and 500 mm x 500 mm column section

$$I_{st} = 0.176 \times \rho_t \times b \times h^3 \times \gamma^2$$
Concrete Design Handbook (Table 8.2(b))

$$I_{st} = 0.176 \times \frac{12 \times 500}{500 \times 500} \times 500 \times 500^3 \times 0.75^2 = 1.485 \times 10^8 \text{ mm}^4$$

$$\beta_d = \frac{P_{f,sustained}}{P_f} = \frac{2220}{4200} = 0.529$$

$$(EI)_{eff} = \frac{0.2E_c I_g + E_s I_{st}}{1 + \beta_d}$$
CSA A23.3-19 (Eq. 10-19)

8

$(EI)_{eff} = \frac{0.2 \times (29602) \times (5.21 \times 10^9) + (200000) \times (1.485 \times 10^8)}{1 + 0.529} = 3.96 \times 10^{13} \text{ N.mm}^2$ $P_{c} = \frac{\pi^{2} (EI)_{eff}}{(kl)^{2}}$ CSA A23.3-19 (Eq. 10.18) $P_c = \frac{\pi^2 \times (3.96 \times 10^{13})}{(0.835 \times (8600 - 500))^2} = 8544 \text{ kN}$

$C_m = 0.6 + 0.4 \frac{M_1}{M_2} \ge 0.4$ CSA A23.3-19 (10.15.3.2)

CSA A23.3-04, clause 10.15.3.1 stated that " M_2 in Equation 10.16 shall not be taken as less than $P_f(15+0.03h)$ about each axis separately."

CSA A23.3-14, clause 10.15.3.1 stated that " M_2 in Equation 10.17 shall not be taken as less than $P_{\ell}(15+0.03h)$ about each axis separately with the member bent in single curvature with Cm taken as 1.0."

The CSA A23.3-14, clause 10.15.3.1 provides unclear guidance implying the M_2 shall not be taken less than the minimum moment, $P_{\ell}(15+0.03h)$ with members bent in single curvature only. This provision is revised entirely and clarified in CSA A23.3-19 as follows to consistently require $C_m = 1.0$ in all cases where $M_{2,min}$ exceeds M_2 .

CSA A23.3-19, clause 10.15.3.1 states that "M₂ in Equation 10.17 shall not be taken as less than M_{2,min} about each axis separately. If M_{2,min} exceeds M₂, C_m shall be taken as equal to 1.0."

Check minimum moment:

 $(M_2)_{\min} = P_f (15 + 0.03h) = 126 \text{ kN.m} > M_2 = 105 \text{ kN.m}$

Therefore, $C_m = 1.0$

 $M_c =$

$$M_c = \frac{1.0 \times 126}{1 - \frac{4200}{0.75 \times 8544}} = \frac{1.0 \times 126}{1 - 0.655} = 2.9 \times 126 = 365.6 \text{ kN.m} \ge 126.0 \text{ kN.m}$$

The slenderness effects resulted in a 248% increase of the first-order moment.

sucolumn

CSA A23.3-19 (10.15.3.1)

CSA A23.3-19 (10.15.3.1)

CSA A23.3-19 (Eq. 10.17)

$$\frac{C_m M_2}{1 - \frac{P_f}{\phi_m P_2}} \ge M_2$$

6. Column Design

Based on the factored axial loads and magnified moments considering slenderness effects, the capacity of the assumed column section (500 mm \times 500 mm with 12 – 25M bars distributed all sides equal) will be checked and confirmed to finalize the design. A column interaction diagram will be generated using strain compatibility analysis, the detailed procedure to develop column interaction diagram can be found in "Interaction Diagram - Tied Reinforced Concrete Column" example.

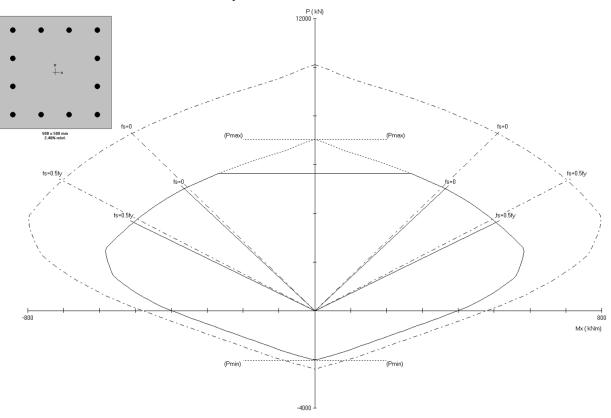
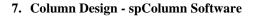
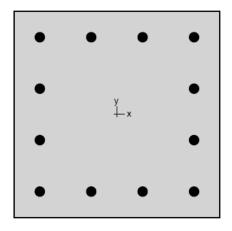



Figure 6 – Designed Column Interaction Diagram



spColumn v7.00 Computer program for the Strength Design of Reinforced Concrete Sections Copyright - 1988-2020, STRUCTUREPOINT, LLC. All rights reserved

Structure Point

Licensee stated below acknowledges that STRUCTUREPOINT (SP) is not and cannot be responsible for either the accuracy or adequacy of the material supplied as input for processing by the spColumn computer program. Furthermore, STRUCTUREPOINT neither makes any warranty expressed nor implied with respect to the correctness of the output prepared by the spColumn program. Although STRUCTUREPOINT has endeavored to produce spColumn error free the program is not and cannot be certified infallible. The final and only responsibility for analysis, design and engineering documents is the licensee's. Accordingly, STRUCTUREPOINT disclaims all responsibility in contract, negligence or other tort for any analysis, design or engineering documents prepared in connection with the use of the spColumn program. Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6

STRUCTUREPOINT - spColumn v7.00 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-19 Examples\Slenderness_Non-Sway Frame_CSA A23.3-19.col

Contents

1. General Information	3
2. Material Properties	3
2.1. Concrete	3
2.2. Steel	3
3. Section	3
3.1. Shape and Properties	3
3.2. Section Figure	
4. Reinforcement	4
4.1. Bar Set: CSA G30.18	4
4.2. Confinement and Factors	4
4.3. Arrangement	4
5. Loading	5
5.1. Load Combinations	5
5.2. Service Loads	5
5.3. Sustained Load Factors	5
6. Slenderness	5
6.1. Sway Criteria	5
6.2. Columns	5
6.3. X - Beams	5
7. Moment Magnification	
7.1. General Parameters	
7.2. Effective Length Factors	
7.3. Magnification Factors: X - axis	
8. Factored Moments	6
8.1. X - axis	
9. Factored Loads and Moments with Corresponding Capacity Ratios	6
10. Diagrams	7
10.1. PM at 0=0 [deg]	7

List of Figures

Figure 1: Col	Imn section4
rigaro 1. Ooi	

STRUCTUREPOINT - spColumn v7.00 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-19 Examples\Slenderness_Non-Sway Frame_CSA A23.3-19.col

1. General Information

File Name	C:\Slenderness_Non-Sway Frame_CSA A23.3-19.col
Project	Design of Braced Column
Column	Interior
Engineer	SP
Code	CSA A23.3-19
Bar Set	CSA G30.18
Units	Metric
Run Option	Investigation
Run Axis	X - axis
Slenderness	Considered
Column Type	Structural
Capacity Method	Moment capacity

2. Material Properties

2.1. Concrete

Туре	Standard	
f _c	40	MPa
Ec	29601.6	MPa
fc	31.6	MPa
Γ _c E _c f _c ε _u	0.0035	mm/mm
β1	0.87	

2.2. Steel

Туре	Standard	
fy	400	MPa
E₅	200000	MPa
ε _{yt}	0.002	mm/mm

3. Section

3.1. Shape and Properties

Туре	Rectangular	
Width	500	mm
Depth	500	mm
Ag	250000	mm ²
I _x	5.20833e+009	mm ⁴
l _y	5.20833e+009	mm ⁴
r _x	144.338	mm
r _y	144.338	mm
r _y X _o	0	mm
Y _o	0	mm

STRUCTUREPOINT - spColumn v7.00 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-19 Examples\Slenderness_Non-Sway Frame_CSA A23.3-19.col

Page | 4 1/16/2020 11:56 AM

3.2. Section Figure

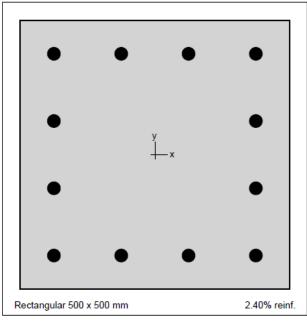


Figure 1: Column section

4. Reinforcement

4.1. Bar Set: CSA G30.18

Bar	Diameter	Area	Bar	Diameter	Area	Bar	Diameter	Area
	mm	mm²		mm	mm²		mm	mm²
#10	11.30	100.00	#15	16.00	200.00	#20	19.50	300.00
#25	25.20	500.00	#30	29.90	700.00	#35	35.70	1000.00
#45	43.70	1500.00	#55	56.40	2500.00			

4.2. Confinement and Factors

Confinement type	Tied			
For #55 bars or less	#10 ties			
For larger bars	#15 ties			
Material Resistance Factors				
Axial compression, (a)	0.8			
Steel (∮₅)	0.85			
Concrete (¢c)	0.65			
Minimum dimension, h	500 mm			

4.3. Arrangement

Pattern	All sides equal
Bar layout	Rectangular
Cover to	Longitudal bars
Clear cover	50 mm

STRUCTUREPOINT - spColumn v7.00 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-19 Examples\Slenderness_Non-Sway Frame_CSA A23.3-19.col

Page | 5 1/16/2020 11:56 AM

Bars	12 #25
Total steel area, A₅	6000 mm ²
Rho	2.40 %
Minimum clear spacing	100 mm

5. Loading

5.1. Load Combinations

Combination	Dead	Live	Wind	EQ	Snow
U1	1.400	0.000	0.000	0.000	0.000
U2	1.250	1.500	0.000	0.000	0.000

5.2. Service Loads

No.	Load Case	Axial Load	Mx @ Top	Mx @ Bottom	Му @ Тор	My @ Bottom
		kN	kNm	kNm	kNm	kNm
1	Dead	1776.00	48.00	-8.00	0.00	0.00
1	Live	1320.00	30.00	-5.00	0.00	0.00
1	Wind	0.00	0.00	0.00	0.00	0.00
1	EQ	0.00	0.00	0.00	0.00	0.00
1	Snow	0.00	0.00	0.00	0.00	0.00

5.3. Sustained Load Factors

Load Case	Factor
	%
Dead	100
Live	0
Wind	0
EQ	0
Snow	0

6. Slenderness

6.1. Sway Criteria

X-Axis	Non-sway column
--------	-----------------

6.2. Columns

Column	Axis	Height	Width	Depth	I	f'c	Ec
		m	mm	mm	mm ⁴	MPa	MPa
Design	Х	8.1	500	500	5.20833e+009	40	29601.6
Above	х	4.3	500	500	5.20833e+009	40	29601.6
Below	Х	4.3	500	500	5.20833e+009	40	29601.6

6.3. X - Beams

Beam	Length	Width	Depth	I	f'c	Ec
	m	mm	mm	mm ⁴	MPa	MPa
Above Left	7	740	500	7.70833e+009	40	29601.6
Above Right	7	740	500	7.70833e+009	40	29601.6
Below Left	7	740	500	7.70833e+009	40	29601.6
Below Right	7	740	500	7.70833e+009	40	29601.6

STRUCTUREPOINT - spColumn v7.00 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-19 Examples\Slenderness Non-Sway Frame_CSA A23.3-19.col Page | 6 1/16/2020 11:56 AM

7. Moment Magnification

7.1. General Parameters

Factors	Code defaults
Stiffness reduction factor, ϕ_{κ}	0.75
Cracked section coefficients, cl(beams)	0.35
Cracked section coefficients, cl(columns)	0.7
0.2 E _c I _g + E _s I _{se} (X-axis)	6.05e+010 kNmm ²
Minimum eccentricity, ex min	30.00 mm
k'	(P _f / (f _c *A _g)) ^{0.5}

7.2. Effective Length Factors

Axis	Ψ _{top}	Ψ_{bottom}	k (Nonsway)	k (Sway)	kl _u /r
X	1.650	1.650	0.835	(N/A)	46.83

7.3. Magnification Factors: X - axis

Load		At Ends					Along Length					
Combo)	∑Pr	Pc	∑Pc	βds	δε	Pr	k'l _u /r	Pc	βdns	Cm	δ
		kN	kN	kN			kN		kN			
1	U1	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	2486.40	(N/A)	6533.27	1.000	1.000	2.030
1	U2	(N/A)	(N/A)	(N/A)	(N/A)	(N/A)	4200.00	(N/A)	8548.21	0.529	1.000	2.899

8. Factored Moments

NOTE: Each loading combination includes the following cases: Top - At column top Bot - At column bottom

8.1. X - axis

Load				1 st Order				2 nd Order		Ratio
Comb	0		M _{ns}	Ms	Mr	M _{min}		M	Mc	2 nd /1 st
			kNm	kNm	kNm	kNm		kNm	kNm	
1	U1	Тор	67.20	(N/A)	67.20	74.59	M ₂ =	67.20	151.44	(N/A)
1	U1	Bot	11.20	(N/A)	11.20	74.59	M1=	11.20	151.44	(N/A)
1	U2	Тор	105.00	(N/A)	105.00	126.00	M ₂ =	105.00	365.33	(N/A)
1	U2	Bot	17.50	(N/A)	17.50	126.00	M ₁ =	17.50	365.33	(N/A)

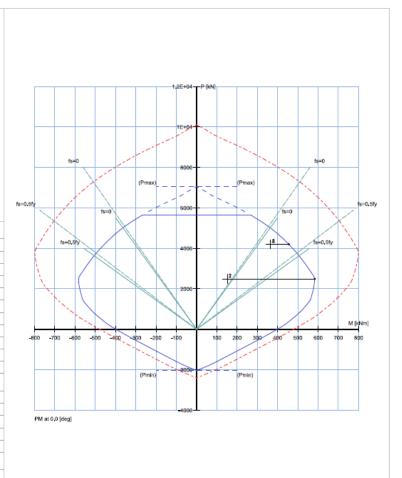
9. Factored Loads and Moments with Corresponding Capacity Ratios

NOTE: Calculations are based on "Moment Capacity" Method.

Each loading combination includes the following cases:

Top - At column top Bot - At column bottom

No. Load Demand Capacity Parameters at Capacity Capacity Combo Pr NA Depth Mtx $\mathbf{P_r}$ Mrx Ratio ٤ kΝ kNm kΝ kNm mm 2486.40 151.44 2486.40 583.06 274 0.00209 0.26 1 1 U1 Тор 2 1 U1 2486.40 151.44 2486.40 583.06 274 0.00209 0.26 Bot 3 1 U2 Тор 4200.00 365.33 4200.00 455.21 379 0.00054 0.80 4 1 U2 Bot 4200.00 365.33 4200.00 455.21 379 0.00054 0.80



STRUCTUREPOINT - spColumn v7.00 Licensed to: StructurePoint. License ID: 00000-0000000-4-25EF2-2C6B6 C:\CSA A23.3-19 Examples\Slenderness_Non-Sway Frame_CSA A23.3-19.col

10. Diagrams 10.1. PM at θ=0 [deg]

• • • •	Ļ.	
500	x 500 mm	
General Information		
Project	Design of Braced C	Column
Column	Interior	
Engineer	SP	
Code	CSA A23.3-19	
Bar Set	CSA G30.18	
Units	Metric	
Run Option	Investigation	
Run Axis	X - axis	
Slenderness	Considered	
Column Type	Structural	
Capacity Method	Moment capacity	
Materials		
fc		MPa
Ec	29601.6	MPa
fy		MPa
Es	200000	MPa
Section		
Туре	Rectangular	
Width	500	mm
Depth	500	mm
Ag	250000	mm ²
lx .	5.20833e+009	mm ⁴
l _y	5.20833e+009	mm ⁴
Reinforcement		
Pattern	A sides equal	
Bar layout	Rectangular	
Cover to	Longitudal bars	
Clear cover	50	mm
Bars	12 #25	
Confinement type	Tied	
Total steel area, A _s	6000	mm ²
Rho	2.40	
Min. clear spacing	100	mm

No.	Loa	d Comb	00	Pr	Mfx	Ρ,	Mrx	Capacity
				kN	kNm	kN	kNm	Ratio
3	1	U2	Тор	4200.0	365.3	4200.00	455.21	0.80
4	1	U2	Bot	4200.0	365.3	4200,00	455,21	0.80
1	1	U1	Тор	2486.4	151.4	2486.40	583.06	0.26
2	1	U1	Bot	2486.4	151,4	2486,40	583,06	0,26

Max, Capacity Ratio: 0.80

8. Conclusions & Observations

The analysis of the reinforced concrete section performed by <u>spColumn</u> conforms to the provisions of the Strength Design Method and Unified Design Provisions with all conditions of strength satisfying the applicable conditions of equilibrium and strain compatibility and includes slenderness effects using moment magnification method for sway and nonsway frames.

CSA A23.3 provides multiple options for calculating values of $(EI)_{eff}$ and magnification factor leading to variability in the determination of the adequacy of a column section. Engineers must exercise judgment in selecting suitable options to match their design condition. The <u>spColumn</u> program utilizes the exact methods whenever possible and allows user to override the calculated values with direct input based on their engineering judgment wherever it is permissible.

In the case where the larger first-order moment (M₂) is less than the minimum moment (M_{2,min}) for a column in non-sway frame, significantly higher magnification is expected when using CSA A23.3-19 as compared to the prior editions of CSA A23.3. The first-order moment increased by 248% (compared to 93.5% increase when using CSA A23.3-14)^{*} due to the adjustment on clause 10.15.3.1 in CSA A23.3-19 where C_m shall be taken as equal to 1.0 when M_{2,min} exceeds M₂. [M₂ = 105 kN.m, M_{2,min} = 126 kN.m, M_c = 365.6 kN.m (CSA A23.3-19)^{*}]

^{*} Detailed calculations are shown in "Slenderness Effects for Columns in Non-Sway Frame - Moment Magnification Method (CSA A23.3-14)" design example.